Quadratic functions are written in the form:	
--	--

The x - intercepts (when y = 0) of the parabola
$$y = ax^2 + bx + c$$
 are called the or _____ of the equation $(ax^2 + bx + c = 0)$

Draw a picture to illustrate each situation

EX1. Given the following graph of the equation $y = x^2 - 7x + 10$. Answer the following questions.

What is the axis of symmetry? ___

What are the coordinates of the turning point?_

Is the T.P. a max or minimum point?

How many zeros are there?_____

What are the solutions of this equation? ____

What are the solutions called? _____

Now, solve the equation algebraically: $0 = x^2 - 7x + 10$

$$0 = x^2 - 7x + 10$$

What do you notice?

What is the axis of symmetry? _____

What are the coordinates of the turning point?_____

Is the T.P. a max or minimum point? _____

How many zeros are there?_____

What are the solutions of this equation? _____

What do you call these solutions? _____

Procedure for writing an equation for a graphed quadratic function

Given the two graphs below, write an equation for each.

Ex 3:

Ex 4:

GRAPHING/EXPLORING QUADRATIC EQUATIONS CONT... (DAY 4)

Ex1: Graph: $f(x) = 3x^2 + 6x - 4$

Axis of symmetry: _____

Vertex:

Domain____

Range ____

Find f(1) _____

Find f(-2)_____

Is the parabola a maximum or a minimum? Explain: _____

Ex2: Graph: $f(x) = -2x^2 - 8x - 2$

Axis of symmetry:

Vertex: ____

Domain _____

Range ____

What is the y-intercept _____

Find f(0) _____

Find f(x) = 4

Ex3: Given the following two functions, which one has the larger maximum?

$$f(x) = -2x^2 - 8x + 3$$

Ex4: Given the following three functions, which one has the least minimum?

$$y = x^2 + 4x + 4$$

$$y = x^2 + 4x + 4$$
 $f(x) = x^2 + 2x - 24$

Ex5: The equation of the axis of symmetry of the graph of $y = 2x^2 - 3x + 7$ is

(1)
$$x = \frac{3}{4}$$
 (2) $y = \frac{3}{4}$ (3) $x = \frac{3}{2}$

(2)
$$y = \frac{3}{4}$$

(3)
$$x = \frac{3}{2}$$

(4)
$$y = \frac{3}{2}$$

Ex6: The roots of the equation $3x^2 - 27x = 0$ are

- (1) 0 and 9
- (3) 0 and -9
- (2) 0 and 3
- (4) 0 and -3

Ex7: What are the vertex and axis of symmetry of the parabola shown in the graph below?

- (1) Vertex (1, 6); axis of symmetry: y = 1
- (2) Vertex (1, 6); axis of symmetry: x = 1
- (3) Vertex (6, 1); axis of symmetry: y = 1
- (4) Vertex (6, 1); axis of symmetry: x = 1