

APPLICATIONS WITH PARABOLIC FUNCTIONS (DAY 7)

EX. 1 Using the graph at the right, It shows the **height** h in feet of a small rocket f seconds after it is launched. The path of the rocket is given by the equation: $h = -16f^2 + 128f$.

h (height (feet))

5. After 6 seconds, about how high is the rocket? ______
is the rocket going up or going down? _____

6. Do you think the rocket is traveling faster from 0 to 1 second or from 3 to 4 seconds? Explain your answer.

- 7. Using the equation, find the exact value of the height of the rocket at 2 seconds.
- 8. What is the domain of the graph?
- 9. What is the range of the graph?
- 10. Express the interval over which the graph is increasing.
- 11. Express the interval over which the graph is decreasing.

EX2: A ball is thrown in the air. The path of the ball is represented by the equation $h = -t^2 + 8t$. Graph the equation over the interval $0 \le t \le 8$ on the accompanying grid.

a) What is the maximum height of the ball?_____

b) What is the amount of time that the ball is above 7 meters?

time (seconds)

EX3: A swim team member performs a dive from a 14-foot high springboard. The parabola below shows the path of her dive.

a) What is the axis of symmetry?

b) Find f(6) _____

EX4: Consider the graph of the equation $y = ax^2 + bx + c$, when $a \ne 0$. If a is multiplied by 3, what is true of the graph of the resulting parabola?

- 1) The vertex is 3 units above the vertex of the original parabola.
- 2) The new parabola is 3 units to the right of the original parabola
- 3) The new parabola is wider than the original parabola.
- 4) The new parabola is narrower than the original parabola.

EX5: Melissa graphed the equation $y = x^2$ and Dave graphed the equation $y = -3x^2$ on the same coordinate grid. What is the relationship between the graphs that Melissa and Dave drew?

EX6: The graph of a parabola is represented by the equation $y = ax^2$ where a is a positive integer. What happens to the new parabola if a is multiplied by $\frac{1}{2}$?

QUADRATIC APPLICATION WORD PROBLEMS (SOLVING ALGEBRAICALLY) (DAY 8)

Warm-Up: If 5 is a root of $x^2 - 3x + k = 0$, find k.

What is the other root?

<u>Procedure for Word Problems</u>

- Highlight given functions in the word problems
- Identify variables in the problem/function and highlight what they represent
- READ question carefully to determine WHAT variable needs to be solved for
- After t seconds, a ball tossed in the air from the ground level reaches a height of h feet 1. given by the function $h(t) = 144t - 16t^2$.
 - What is the height of the ball after 3 seconds? _ a.

After how many seconds will the ball hit the ground before rebound?

- A rocket carrying fireworks is launched from a hill 80 feet above a lake. The rocket will fall into the lake after exploding at its maximum height. The rocket's height above the surface of the lake is given by the function $h(t) = -16t^2 + 64t + 80$.
- a. What is the height of the rocket after 1.5 seconds?
- b. What is the maximum height reached by the rocket?
- c. After how many seconds after it is launched will the rocket hit the lake?

3. A rock is thrown from the top of a tall building. The distance, in feet, between the rock and the ground t seconds after it is thrown is given by $d(t) = -16t^2 - 4t + 382$. How long after the rock is thrown is it 370 feet from the ground?

