Answers

- 1. A tangent line is perpendicular to the radius of the circle at the point of tangency.
- 2. It appears that A is the only point of intersection, but by the Triangle Angle Sum Theorem, $m\angle A = 89^{\circ}$, so \overline{AB} is not perpendicular to \overline{AG} , so \overline{AB} is not a tangent.
- 3. Yes; there is a radius to every point on the circle, and there is a perpendicular to every radius.
- **4.** Since $\angle APQ$, $\angle QSA$, $\angle QSB$, and $\angle QRB$ are right angles, $\angle PAS$ and $\angle PQS$ are supplementary, and $\angle RBS$ and $\angle RQS$ are supplementary. But since $\angle PQS$ and $\angle RQS$ form a linear pair, they are also supplementary. So, $\angle PAS \cong \angle RQS$ and $\angle RBS \cong \angle PQS$.

of the circle; that segment is the hypotenuse of a right mangle,

with a radius and the tangent as Jegs. It is possible to draw two

- 5. no
- 6. yes
- 7. 59°
- 8. $2\sqrt{14}$
- 9.17
- 10. 72° spins and of sircle to tone calend a more small

14. Given: $\odot T$ with tangent \overline{DE} and point of tangency E, and tangent \overline{DF} and point of tangency F

Prove: $\overline{DE} \cong \overline{DF}$

Proof: Since \overline{TE} and \overline{TF} are both radii of $\odot T$, $\overline{TE} \cong \overline{TF}$. Since \overline{DE} is a tangent at E, $\angle TED$ is a right angle. Similarly, $\angle TFD$ is a right angle. Draw \overline{TD} . $\overline{TD} \cong \overline{TD}$, and \overline{TD} is the hypotenuse of right triangles $\triangle TED$ and $\triangle TFD$, so by HL, $\triangle TED \cong \triangle TFD$. Therefore, by CPCTC, $\overline{DE} \cong \overline{DF}$.

See answers for Exercises 15, 21 on next page.

PRACTICE

The segments \overline{AB} and \overline{CD} are tangent to $\odot T$. Find each value. SEE EXAMPLES 1 AND 2

16. AB $6\sqrt{3}$

17. m∠TDC 32°

For Exercises 18–20, the segments are tangent to the circle. Find each value. SEE EXAMPLES 3 AND 4

18. DG 9

P.3

19. Perimeter of JLNQ 34

20. AC 69

21. Trace $\odot P$ and point A. Construct a tangent to $\odot P$ that passes through A. SEE EXAMPLE 5

xisting<mark>a</mark>ti ength of

P.3

22. The diameter of $\odot F$ is 8; AB = 10; and \overline{AB} , \overline{BC} , and \overline{AC} are tangent to $\odot F$. What is

 $\triangle ABC$? 60

the perimeter of

• F

C

Answers

15. 2x; By Theorem 10-2, AC = FC, AB = BD, and DE = EF. So, BD + BC = CA, and DE + EC = FC.

ASSESSMENT PRACTICE

26. Circle P is described by the equation $(x+3)^2 + (y-2)^2 = 25$. Which of the following lines are tangent to $\bigcirc P$? Select all that apply.

①
$$x = 2$$

$$By = 5$$

$$\bigcirc y = x$$

27. SAT/ACT Line m is tangent to $\bigcirc A$ at B. What is the area of $\triangle ABC$?

A 10

© 2√65

B 18

① $\frac{5\sqrt{65}}{2}$

28. Performance Task The African art design below is based on circles that are tangent to each other.