Table of Contents 🔍 🔍 🗐

 Section
 Page
 Page Section

 Image
 Image Page 1 of 5
 Image Page Section

Goal

Use properties of chords of circles.

Key Words

- congruent arcs p. 602
- perpendicular bisector p. 274

By finding the perpendicular bisectors of two chords, an archaeologist can recreate a whole plate from just one piece.

Full Page View

This approach relies on Theorem 11.5, and is shown in Example 2.

THEOREM 11.4

Words If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and its arc.

Symbols If $\overline{BG} \perp \overline{FD}$, then $\overline{DE} \cong \overline{EF}$ and $\overline{DG} \cong \widehat{GF}$.

EXAMPLE 1 Find the Length of a Chord

In $\odot C$ the diameter \overline{AF} is perpendicular to \overline{BD} . Use the diagram to find the length of \overline{BD} .

Solution

Because \overline{AF} is a diameter that is perpendicular to \overline{BD} , you can use Theorem 11.4 to conclude that \overline{AF} bisects \overline{BD} . So, BE = ED = 5.

BD = BE + EDSegment Addition Postulate= 5 + 5Substitute 5 for BE and ED.= 10Simplify.

ANSWER The length of \overline{BD} is 10.

Checkpoint Find the Length of a Segment

1. Find the length of \overline{JM} .

2. Find the length of \overline{SR} .

Section Page Page Section

THEOREM 11.5

⊕)Q)

Full Page View

(国)

Words If one chord is a perpendicular bisector of another chord, then the first chord is a diameter.

Symbols If $\overline{JK} \perp \overline{ML}$ and $\overline{MP} \cong \overline{PL}$, then \overline{JK} is a diameter.

All diameters of a circle include the center of the circle. Therefore, the point where two diameters intersect is the center of the circle.

EXAMPLE 2 Find the Center of a Circle

Suppose an archaeologist finds part of a circular plate. Show how to reconstruct the original shape of the plate.

Solution

- 1 Draw any two chords that are not parallel to each other.
- 2 Draw the perpendicular bisector of each chord. These lines contain diameters.

3 The diameters intersect at the circle's center. Use a compass to draw the rest of the plate.

THEOREM 11.6

Words In the same circle, or in congruent circles:

- If two chords are congruent, then their corresponding minor arcs are congruent.
- If two minor arcs are congruent, then their corresponding chords are congruent.

Symbols If $\overline{AB} \cong \overline{DC}$, then $\widehat{AB} \cong \widehat{DC}$. If $\widehat{AB} \cong \widehat{DC}$, then $\overline{AB} \cong \overline{DC}$.

ARCHAEOLOGISTS study and reconstruct artifacts which provide information about past cultures.

STUDY TIP

If two central angles are congruent then their corresponding arcs are congruent.

Practice and Applications

Extra Practice

See p. 695.

Identifying Diameters Determine whether \overline{AB} is a diameter of the circle. Explain your reasoning.

Finding Chords and Central Angles Find the value of x.

Logical Reasoning Name any congruent arcs, chords, or angles. State a postulate or theorem that justifies your answer.

Finding Measures Find the measure of the red segment or arc.

Using Algebra Find the value of *x*.

Homework Help

Example 1: Exs. 6–8, 15–20 Example 2: Exs. 21–22 Example 3: Exs. 9–20

21. Visualize It Draw a large circle and cut it out. Tear part of it off and ask another student to recreate your circle.

Careers

EMTS Some Emergency

emergencies.

Medical Technicians (EMTs) train specifically for wilderness

Career Links

Link

Table of Contents

Full Page View

 (\mathbf{Q})

- **22. Avalanche Rescue Beacon** An avalanche rescue beacon is a device used by backcountry skiers. It gives off a signal that is detectable within a circle of a certain radius. In a practice drill, a ski patrol uses the following steps to locate a beacon buried in the snow. Explain how it works.
 - Walk in a straight line until the signal disappears. Turn around and walk back until the signal disappears again.

O Turn around and walk in a straight line until the signal disappears again.

Walk back to the halfway point, and walk away from the line at a 90° angle until the signal disappears.

Walk back to the halfway point. You will be near the center of the circle. The beacon is under you.

Standardized Test Practice

23. Multi-Step Problem Use the diagram below.

- **a.** Explain why $\widehat{AD} \cong \widehat{BE}$.
- **b.** Find the value of *x*.
- **c.** Find \widehat{mAD} and \widehat{mBE} .
- **d.** Find \widehat{mBD} .

Mixed Review Measuring Arcs In the diagram below, \overline{AD} and \overline{BE} are diameters of $\bigcirc F$. Find the measure. (Lesson 11.3)

24. \widehat{mDE}	25. \widehat{mBC}
26. \widehat{mAE}	27. mBCD
28. <i>mABC</i>	29. <i>mADE</i>

A F D B C

Algebra Skills Comparing Numbers Compare the two numbers. Write the answer using <, >, **or** =. (*Skills Review, p. 662*)

30. -26 and -29 **31.** $\frac{15}{20}$ and $-\frac{3}{4}$ **32.** 0.2 and $\frac{1}{5}$