Math 154 Pre Calculus II Cornerstone Final 2017-2018 Teacher/School Class Time Name Instructions. Answers with no work may be counted incorrect. The grader must be able to understand your thought process from your work, so be clear. You may use your calculator on this exam. Write your answer on the box provided. When an exact answer is not required, round to 3 decimal places, unless otherwise indicated. 1. (4 pts.) The largest escalator in the U.S. is 200 feet long (the distance people actually travel), and has an angle of elevation of 25.15 degrees. How high is the top of this escalator above the ground floor? Round to the nearest foot. WORK: Answer 2. (4 pts.) A Tornado jet and a F-16 Fighting Falcon jet are flying side by side in close formation. They break out of formation, and the angle between their paths is 36 degrees. If the Tornado flies at 1450 miles/hr, and the Falcon flies at 1350 miles per hour, how far apart are they after 2 hours? Round to the nearest tenth of a mile. WORK:

Answer

3. (4 pts.) One Coast Guard station is located 105 miles due west of a second station. A ship sends a distress signal that is picked up by both stations. The location of the ship from the east station is 35 degrees west of south. The location from the ship from the west station is 42 degrees east of south. How far is each station from the ship. Round to the nearest tenth of a mile.			
WORK:			
E .			
Answer			
2	-		
	ing around the high school track. When they		
	i-circle), Jill runs in the inside lane, which has y runs in the outside lane, which has a radius		
of 46.26 meters. In completely round	ling the curve, how much farther must Johnny		
run? Round to the nearest tenth of a	meter.		
WORK:			
Answer			
-			
I	*		

_	If and Ois b	obvious 37 and 0 - find expetitions in reduced forms for				
Э.	. If $\sec \theta = \frac{13}{12}$ and θ is between $\frac{3\pi}{2}$ and 2π , find exact values in reduced form for					
	a. (2 pts.) $\tan \theta$					
	WORK:	Answer				
	2					
	b. (2 pts.) sin 2 <i>θ WORK</i> :					
		Answer				
	c. (2 pts.) $\cos \frac{\theta}{2}$ WORK:					
		Answer				

6 . (4 pts.) Algebraically solve for the $[0,2\pi)$ that satisfy the equation $\cos\theta$	the exact values of all angles in the interval $+ \sin \theta = 1$
WORK:	*
z	
Answer	
extend the spring, and then released the floor at time t , where d is in centivaries sinusoidally over time. A stopy reaches its first high point 42 centimes	the end of a frictionless spring, pulled down to t . Let t be the distance of the weight above meters and t is in seconds. The distance watch reads 0.5 seconds when the weight eters above the floor, and the next low point, rs at 1.2 seconds. Write a trigonometric
WORK	
	»
4	
Answer	
b. (2 pts.) Algebraically determi	ne the distance from the floor at 4 seconds.
a. WORK:	
Answer	
-	·

8 . Consider $y = -2\cos(\frac{\pi}{4}(\theta - 2)) + 3$		
a. (2 pts.) What is the period of thi	s function?	
Answer		
b . (2 pts.) What is the vertical shift	of this function	1?
	Answer	
c. (2 pts.) What is the horizontal sl	hift of this func	tion?
	Answer	
d. (4 pts.) Sketch the graph of the x-axis in at least 3 points to show correctly. Label your y-axis at the places.	w you have yoเ	ır period marked
•	a.	
9 . (4 pts.) Change $(5, \frac{5\pi}{6})$ from polar values.	ar to rectangula	ar coordinates. List exact
WORK:		
Answer		

form	(2 pts.) Change $r = \frac{1}{1 - 2\cos\theta}$ (2 pts.) $Ax^2 + Bxy + Cy^2 + Dx + Ey + Dx$	F =	rectangular equation. Put your answer in the 0.
	WORK:		

Answer	
ŭ	и

11. (4 pts.) If vector v = 3i + 2j and vector w = -2i - 2j, find the **magnitude** of vector (-3v - 3w). Round to two decimal places.

WORK:

Answer				
	1÷			
		_		

12. (4 pts.) Vector A has a length of 3.75 cm and an angle of 34 degrees from the positive x-axis. Vector B has a length of 4.12 cm and an angle of 75 degrees from the positive x-axis. Vector C has a length of 5.34 cm and an angle of 120 degrees from the positive x-axis. Rounding to two decimal places, find the magnitude and the direction (in degrees) of the resultant vector when the 3 vectors are added together.

WORK:

A		
Answer		
	I .	

13. (4 pts.) Verify that the following equation is an identity. $\csc\theta \tan\theta = \cos\theta \sec^2\theta$