A8 – Transformations of Cube Root Functions

Graph each function, what is the domain, range, x-intercept, y-intercept

1.
$$g(x) = \sqrt[3]{x} + 4$$

Domain: _____

Range: _____

x-int: _____

y-int: _____

2.
$$g(x) = \sqrt[3]{x+4}$$

Domain: _____

Range: _____

x-int: _____

y-int: _____

3.
$$y = -2\sqrt[3]{x}$$

Domain: _____

Range: _____

x-int: _____

y-int: _____

4.
$$y = \sqrt[3]{x+2}$$

Domain: _____

Range: _____

x-int: _____

y-int: _____

$$5. f(x) = \frac{1}{4} \sqrt[3]{x}$$

Domain: _____

Range: _____

x-int: _____

y-int: _____

6.
$$y = \sqrt[3]{x-3} - 5$$

Domain: _____

Range: _____

x-int: _____

y-int: _____

The graph of g(x) can be obtained from the graph of the parent function $f(x) = \sqrt[3]{x}$ by using the given transformations. Write an equation for the function g(x).

- 7. Reflect the graph over the x-axis, then translate it 2 units right.
- 8. Vertically compress the graph by a factor of $\frac{1}{3}$, then translate it 4 units left and 1 unit up.
- 9. Vertically stretch the graph by a factor of 6, then translate it 1 unit right and 7 units up.
- 10. Horizontally stretch the graph by a factor of $\frac{1}{2}$, then translate it 2 units down.

11. _____ Which function has a graph that is not a translation of the graph of the parent function $f(x) = \sqrt[3]{x}$?

A.
$$g(x) = \sqrt[3]{x - 3.7}$$

c.
$$g(x) = 3.7\sqrt[3]{x}$$

B.
$$g(x) = \sqrt[3]{x} + 3.7$$

D.
$$g(x) = \sqrt[3]{x + 3.7}$$

12. _____ You graph the function $f(x) = \sqrt[3]{x}$. You reflect the graph across the x-axis, stretch the graph vertically by a factor of 2, and translate the graph 2 units to the right. Which of the following is an equation for the resulting graph?

A.
$$g(x) = -2\sqrt[3]{x+2}$$

c.
$$g(x) = -2\sqrt[3]{x} - 2$$

B.
$$g(x) = -2\sqrt[3]{x-2}$$

D.
$$g(x) = \sqrt[3]{-2x} + 2$$